
Dissecting a linux kernel
exploit

by csh, barbie & parisa

gustavoid
 barbieauglend

parisa_km

October / 2019 - H2HC - Sao Paulo, BR

https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part2.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part3.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html

*CVE-2017-11176: "mq_notify: double sock_put()"

We don’t speak for our employer. All the opinions and
information here are of our responsibility.

DISCLAIMER

$./barbie$./gus

GOAL:

DEMO

(We have a backup just in case…)

Agenda

1.Linux kernel fundamentals
2.intro to UAF
3.the CVE and what do we do with that
4.tricks & tips

“

”
0x3f

Now, any other time during the talk or later - we are going to be
around :)

Part #1:

the linux kernel

fundamentals

Virtual Memory Layout
★ from CR3, we can get the physical address of the

top-level of the memory mapping tables (also known
as PML4).

★ why 4 ? bc there are 4 levels of hierarchy of
tables for memory mapping ;)

★ MMTs are setup and then CR3 is set to the address
of top table

Virtual Memory Layout
★ How would you translate 0x100801FFFA8?
★ CR3 value is 0x4ffff000
★ We convert our value to binary:

10 000000010 000000000

111111111 111110101000

★ And 47-39 Bit is 10 = 2 so ...

Virtual Memory Layout
★ We check the Page Directory

pointer table @ 0x3468000
★ Again we are translating

0x100801FFFA8 which in binary
is 10 000000010 000000000
111111111 111110101000

★ And 38-30 Bit is also 10 = 2
so ...

Virtual Memory Layout
★ We check the Page Directory

table @ 0x3588000
★ Again we are translating

0x100801FFFA8 which in binary
is 10 000000010 000000000
111111111 111110101000

★ And 29-21 Bit is also 0
so ...

Virtual Memory Layout
★ We check the Page table @

0x3678000
★ Again we are translating

0x100801FFFA8 which in binary
is 10 000000010 000000000
111111111 111110101000

★ And 20-12 Bit is also this
bunch of ‘1’ so ...

Virtual Memory Layout
★ We check the Page table @

0x3678000
★ Again we are translating

0x100801FFFA8 which in binary
is 10 000000010 000000000
111111111 111110101000

★ And 20-12 Bit is also this
bunch of ‘1’ so ...

the physical address we are looking for is 0x5799000 :)

Part #2:

use-after-free

and basics on the memory layout

Memory
processes in the linux kernel
are instances of task_struct,
the process descriptor.

In this descriptor there is a
field called mm pointing to the
memory descriptor mm_struct.

mm_struct is a summary if the
program’s memory, where the
start and end of the memory
segments as well as the number
of physical memory pages used by
the process and the amount of
virtual address space used are
stored.

In the memory descriptor we also
found important information like
the set of virtual memory areas
and the page tables.

printf()

Memory management
userland

/* code ... */

q = p = malloc(1337);  

free(p);

/* more code containing malloc’s */ 

q[100] = 1234;

/* ... */

Linux Memory
Management

Linux Memory
Management

•What is the allocator?
•What object are we talking about?
•What cache does it belong to? Object size?
Dedicated/general?

•Where is it allocated/freed?
•Where the object is being used after being freed?
How (reading/writing)?

How-to Use-After-Free in
Kernel Mode

•What is the allocator?
•What object are we talking about?
•What cache does it belong to? Object size?
Dedicated/general?

•Where is it allocated/freed?
•Where the object is being used after being freed?
How (reading/writing)?

How-to Use-After-Free in
Kernel Mode

★ check kernel config file
○ grep "CONFIG_SL.B=" /boot/

config-$(uname -r)
★ check the name of the

general purpose caches
from /proc/slabinfo
○ prefixed by "size-" or

"kmalloc-"?

•What is the allocator?
•What object are we talking about?
•Which cache does it belong to? Object size?
Dedicated/general?

•Where is it allocated/freed?
•Where the object is being used after being freed?
How (reading/writing)?

How-to Use-After-Free in
Kernel Mode

SLAB

kmalloc
-2048

How-to Use-After-Free in
Kernel Mode

Kernel Heap Spray
Remember?

Retaking
Goal: allocate a controlled object in place of the old struct
netlink_sock. This is easy with SLAB.

Retaking
Goal: allocate a controlled object in place of the old struct
netlink_sock. This is easy with SLAB.

Retaking
Goal: allocate a controlled object in place of the old struct
netlink_sock. This is easy with SLAB.

Why make it reliable
This may work for
userland application
exploits, but not for the
kernel.

Once you break something
there, you crash. If you
crash, you need to start
over…

Part #3:

the CVE

and what do we do with that

UAF Vulnerability

Public Information

27

Why setting sock to NULL
matters?

•netlink_detachskb()
• if sock is
not NULL during
the exit path, its
reference counter
(sk_refcnt) will be
unconditionally
decreased by 1.

Why setting sock to NULL
matters?

• netlink_detachskb()
• if sock is not NULL during
the exit path, its
reference counter
(sk_refcnt) will be
unconditionally decreased
by 1.

• netlink_getsockbyfilp()
• The counter is
unconditionally incremented

• Thus, that
netlink_attachskb() should
somehow be neutral
regarding refcounter.

Why setting sock to NULL
matters?

• netlink_detachskb()
• if sock is not NULL during
the exit path, its
reference counter
(sk_refcnt) will be
unconditionally decreased
by 1.

• netlink_getsockbyfilp()
• The counter is
unconditionally incremented

• Thus, that
netlink_attachskb() should
somehow be neutral
regarding refcounter.

Our CVE layout

UAF through Type
Confusion

•Prepare the kernel in a suitable state (e.g. make a socket
ready to block)

•Trigger the bug that frees the targeted object while keeping
dangling pointers untouched

•Immediately re-allocate with another object where you can
control data

•Trigger a use-after-free's primitive from the dangling
pointers

•Ring-0 takeover
•Repair the kernel and clean everything
•Enjoy!

What Could Possibly Go Wrong?
• If the array_cache is full, it will call cache_flusharray(). This will
put batchcount free pointer to the shared per-nodearray_cache (if any) and
call free_block(). That is, the next kmalloc() fastest path will not re-use
the latest freed object. This breaks the LIFO property!

• If it is about freeing the last "used" object in a partial slab it is moved
to the slabs_free list.

• If the cache already has "too much" free objects, the free slab is
destroyed (i.e. pages are given back to the buddy)!

• The buddy may go to sleep or compact stuff.

• The scheduler decides to move your task to another CPU and
the array_cache is per-cpu.

• The system is currently running out-of-memory and tries to reclaim memory
from every subsystems/allocators, etc.

• There are other tasks that concurrently use the same slab cache: You’re in
race with them and can lose…

Relocation
Checker
1. Find the exact offsets of nlk-

>pid and nlk->groups
2. Write some magic value in our

"reallocation data
area" (i.e. init_realloc_data(
))

3. Call getsockname() syscall and
check the returned value.

If the returned address matches
our magic value, it means the
reallocation worked

33

nl_table Hash
List

•Netlink uses hash tables to quickly retrieve a struct
sock from a pid

•Fixing a general corrupted doubly-linked List

nl_table Hash
List

•Netlink uses hash tables to quickly retrieve a struct
sock from a pid

•Fixing a general corrupted doubly-linked List

nl_table Hash
List

•Netlink uses hash tables to quickly retrieve a struct
sock from a pid

•Fixing a general corrupted doubly-linked List

Part #4:

tricks & tips

how we work

How do we implement an
exploit?

•We check if the work is worth it
• In this case, we "forced" the trigger from the kernel-land
and validated that we can reliably produce a double
sock_put() bug

•We make notes about the requirements:
• Three requirements to trigger the bug:

• Force netlink_attachskb() to return 1
• Force the second fget() to return NULL
• Unblock the exploit thread
• and whatever else comes our way

Filling up the Receive
Buffer

We work our way through it
•Dump netlink_sock data structure
by SystemTap:

•Two ways to fill the buffer
• lowering sk_rcvbuf below 0 (sk_rcvbuf type is int)
• increasing sk_rmem_alloc above 133120

•netlink_attachskb() can increase the
sk_rmem_alloc value.

•netlink_attachskb() is called
by netlink_unicast().

Things to remember
•UAF can be more or less hard to detect by fuzzer or
manual code review.

•The bug we exploited here existed because of a
single missing line. In addition, it is only
triggered during a race condition which makes it
even harder to detect.

• We touched various Linux kernel subsystems:
• processing (threads, synchronization, scheduler), memory
(logical memory), storage (files and directories access,
virtual file system), networking (sockets access,
protocols, protocol families),…

GDB for Kernel Debugging
•Most virtualization solutions setup a gdb server.
•To debug the arbitrary call primitive

• Putting a breakpoint before the call? There are other
kernel paths that use this call. i.e. you will be breaking
all time without being in your own path

• Set a breakpoint earlier (callstack-wise) on a "not so
used" path that is very specific to your bug/exploit. we
will break in netlink_setsockopt() just before the call
to __wake_up()

$ gdb ./vmlinux-2.6.32 -ex "set architecture
i386:x86-64" -ex "target remote:8864" -ex "b *
0xffffffff814b81c7" -ex "continue"

and when gdb doesn’t help
anymore?

•qemu -
• I like because it’s fast to try and fail
• I don’t use kvm to run it over (QEMU JIT is awesome)

$ qemu-system-x86_64 -kernel <bzImage> -nographic
-append console=ttyS0 -initrd ramdisk.gz

• Uses ramdisk so, it’s easy to use typical distro bzImage
• I can use a custom build of the kernel, with lots of extra
printks to help me debug stuff

• Given console is redirected to serial (ttyS0) - you can
automate boot + execution

and when gdb doesn’t help
anymore?

•you can take advantage of kpanic -
• In doubt if your exploit is executed?
• Better than INT3 (for linux, at least)

and when gdb doesn’t help
anymore?

[44.098571] BUG: unable to handle kernel NULL pointer dereference at (null)
[44.100676] IP: [< (null)>] (null)
[44.100676] PGD 7967067 PUD 798b067 PMD 0
[44.100676] Oops: 0010 [#1] SMP
[44.100676] Modules linked in:
[44.100676] CPU: 0 PID: 234 Comm: exploit_clean Not tainted 3.16.0-4-amd64 #1 Debian 3.16.36-1+deb8u1
[44.100676] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[44.100676] task: ffff88000003e390 ti: ffff880007860000 task.ti: ffff880007860000
[44.100676] RIP: 0010:[<0000000000000000>] [< (null)>] (null)
[44.100676] RSP: 0018:00000000200020a0 EFLAGS: 00000046
[44.100676] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
[44.100676] RDX: 00000000000406f0 RSI: 0000000000000001 RDI: 00000000000406f0
[44.100676] RBP: 00000000deadbeef R08: 0000000000000000 R09: 0000019400000dcf
[44.100676] R10: 00007ffe3ecc8890 R11: 0000000000000202 R12: 0000000000000000
[44.100676] R13: 0000000000000000 R14: 0000000000000001 R15: 00007f1c7726e848
[44.100676] FS: 00007f1c77267740(0000) GS:ffff880007200000(0000) knlGS:0000000000000000
[44.100676] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[44.100676] CR2: 0000000000000000 CR3: 000000000003c000 CR4: 00000000000406f0
[44.100676] Stack:
[44.100676] ffffffff8100540c 00007f1c7706bc88 ffffffff81022f4d aaaaaaaaaaaaaaaa
[44.100676] aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
[44.100676] aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa

Ret-to-User

Page Fault
•Error Code
((PF_PROT | PF_INSTR) &
~PF_WRITE) & ~PF_USER

•Since the faulty page
is present, a PTE
exists, which
describes
• Page Frame Number
• Page Flags

Page Fault
•Error Code
((PF_PROT | PF_INSTR) &
~PF_WRITE) & ~PF_USER

•Since the faulty page
is present, a PTE
exists, which
describes
• Page Frame Number
• Page Flags

Supervisor Mode Execution
Prevention - SMEP

(or any other fancy security
bit in the platform)

Fancy things
• In order to gain arbitrary code execution we hit a
hardware security feature: SMEP. Understanding the
x86-64 access rights determination, as well as page
fault exception traces, we designed an exploitation
strategy to bypass it (disable it using Return-
Oriented-Programming).

•While repairing the socket dangling pointer was
pretty straightforward, repairing the hash list
brought several difficulties.

Defeating SMEP
Strategies

• Don't ret2user
• we control the func field since it is located in userland; we could call one
kernel function, modify func and call another function,… but

• We can't have the return value of the invoked function

• We do not "directly" control the invoked function parameters

• Disable SMEP
• Use Ret2dir

• Every user page has an equivalent address in kernel-land (called "synonyms").
The mapping is located in physmap (or “linear mapping”)

• The PFN of a userland address uaddr can be retrieved by seeking
the pagemap file and read an 8-byte value at offset. Alas, nowadays /proc/
<PID>/pagemap is not world readable anymore

• Overwrite paging structure entries
• If the U/S flag (bit 2) is 0 in at least one of the paging-structure entries, the address is a supervisor-mode

address.
• It implies that we know where this PGD/PUD/PMD/PTE is located in memory. This
kind of attack is easier to do with an arbitrary read/write primitives.

The Arbitrary
Call layout

panic() is called from the curr-
>func() function pointer
in __wake_up_common()

The end:

Extras

or things that may come up...

Finding Gadgets in
Kernel

•vmlinux file contains all Linux Kernel in ELF format

•but it has some extra sections like .init.text which is only used
during the initialization phase and is unmapped from the memory after
that.

•Thus we need to limit our search to the text section.

$./ROPgadget.py --binary vmlinux-2.6.32 --range
0xfffffff81000000-0xffffffff81560f11 | sort > gadget.lst

Stack Pivoting
•We use our arbitrary call primitive to pivot the
stack to a userland one (our “fake” stack which
contains ROP gadgets)

• The stack is only defined by the rsp register. A
common gadget like xchg rsp, rXX ; ret that
exchanges the value of rsp with a controlled
register while saving can be used.

ROP Chain
●Stores ESP and RBP in
userland memory for
future restoration

#define STORE_EAX(addr) \
 *stack++ = POP_RDI_ADDR; \
 *stack++ = (uint64_t)addr + 16; \
 *stack++ = MOV_PTR_RDI_M10_EAX_ADDR;

#define SAVE_ESP(addr) \
 STORE_EAX(addr);

#define SAVE_RBP(addr_lo, addr_hi) \
 *stack++ = MOV_RAX_RBP_ADDR; \
 *stack++ = PUSH_RBP_ADDR; \
 STORE_EAX(addr_lo); \
 *stack++ = SHR_RAX_32_ADDR; \
 STORE_EAX(addr_hi);

●Disables SMEP by flipping
the corresponding CR4 bit

#define SMEP_MASK (~((uint64_t)(1 << 20))) //
0xffffffffffefffff

#define DISABLE_SMEP() \
 *stack++ = MOV_RAX_CR4_ADDR; \
 *stack++ = POP_RDX_ADDR; \
 *stack++ = SMEP_MASK; \
 *stack++ = AND_RAX_RDX_ADDR; \
 *stack++ = PUSH_RAX_ADDR ; \
 *stack++ = POP_RDI_ADDR; \
 *stack++ = MOV_CR4_RDI_ADDR;

●Jump to the payload’s
wrapper

#define JUMP_TO(addr) \
 *stack++ = POP_RCX_ADDR; \
 *stack++ = (uint64_t) addr; \
 *stack++ = JMP_RCX_ADDR;

Clearing SMEP
•CR4 = CR4 & ~(1<<20) or CR4
&= 0xffffffffffefffff

•Since 32-bits of CR4 are
"reserved", hence zero.
That's why we can use 32-
bits register gadgets.

#define SMEP_MASK (~((uint64_t)(1 << 20))) //
0xffffffffffefffff

#define DISABLE_SMEP() \
 *stack++ = MOV_RAX_CR4_ADDR; \
 *stack++ = POP_RDX_ADDR; \
 *stack++ = SMEP_MASK; \
 *stack++ = AND_RAX_RDX_ADDR; \
 *stack++ = PUSH_RAX_ADDR ; \
 *stack++ = POP_RDI_ADDR; \
 *stack++ = MOV_CR4_RDI_ADDR; 52

FINAL:

DEMO

/o\ we did it again \o/

